《数字逻辑》课程教学大纲

课程名称: 数字逻辑 课程类别(必修/选修): 必修 课程英文名称: Digital Logic Circuit 总学时/周学时/学分: 72/4/4 其中实验学时: 18 先修课程: 电路与模拟电子技术 **授课时间:**星期三 5、6 节,星期五 1、2 节 **授课地点:** 教室 6A201 和 6E204, 8 号楼实验室 授课对象: 2016级计算机科学与技术 5、6 班 开课院系: 计算机与网络安全学院 任课教师姓名/职称: 李广明/副教授

联系电话: 761067

Email:ligm@dgut.edu.cn

答疑时间、地点与方式:在课前、课间休息、课后以及实验课中一对一当面答疑:针对普遍性疑问, 课堂讲解答疑;建立QQ群网上答疑。

课程考核方式: 开卷() 闭卷() 课程论文() 其它(√)

使用教材: 1. 李广明,曾令琴,肖慧娟,葛卫清 主编. 数字逻辑电路基础. 北京:人民邮电出版社, 2017: 2. 肖慧娟. 2017《数字逻辑》教学及实验指导书. 第一版. 自编讲义。

教学参考资料:

- 1. 白中英, 谢松云 主编. 数字逻辑. 第六版. 北京: 科学出版社, 2013
- 2. 王玉龙 主编. 数字逻辑实用教程. 第二版. 北京: 清华大学出版社, 2012

课程简介:数字逻辑课程是计算机科学与技术专业、软件工程专业和信息与计算科学专业的必修课, 也是一门硬件基础课程。通过本课程的学习,使学生能够建立逻辑代数的基本概念;掌握逻辑函数的 化简方法;认识和使用常用数字电路器件;掌握数字系统的基本概念并了解数字系统的设计方法;具 有分析数字逻辑电路的功能和进行一般的数字逻辑电路设计的能力。为学生后续硬件类课程的学习打 下基础。

课程教学目标

- 1. 具备数字电路基本知识, 为专业学习打下硬件基础。掌握逻 辑代数的基本理论,认识常用数字器件及功能,掌握数字电路的基 本设计方法、设计工具和设计步骤,具有分析和设计数字电路的基 本能力。
- 2. 培养学生硬件实验研究能力。具有设计实验、执行实验以 及分析实验结果的能力; 具有使用计算机辅助设计电路的能力。
- 3. 将"理论讲解为主"的传统教学模式改革为"理论与实践 并重"的教学模式,实践课程不再是理解理论的辅助手段,而是重 要手段。通过实践任务,培养学生独立思考、勤于动手、善于动手 的习惯和能力,逐步培养学生从事工程技术工作的素质和能力。
- 本课程与学生核心能力培养之 间的关联(授课对象为理工科专 业学生的课程填写此栏):
- ■核心能力 1. 具有运用数学、 基础科学及计算机科学与技术相 关知识的能力。
- ■核心能力 2. 具有设计与执行 实验, 以及分析与解释数据的能 力
- ■核心能力 3. 具有计算机科学 与技术工程实践中所需技术、技 巧及使用计算机辅助工具的能力 ■核心能力 4. 在计算机科学与 技术的许多领域中,具有至少某 一项专业能力,例如:硬件、软 件、多媒体、系统、网络、理论 等,并具有编程能力,进一步地 具备设计、开发软、硬件模块及 系统的能力。
- □核心能力 5.
- □核心能力 6.
- □核心能力 7.
- 口核心能力 8.

理论教学进程表					
周次	教学主题	教学 时长	教学的重点与难点	教学方式	作业安排
1	逻辑代数的基本概念,数制与编码	2	重点:逻辑代数的基本概念 难点:十进制数转换成 2°进制	课堂讲授	数制与编 码习题
1	逻辑代数基本定 理与代数法化简	2	重点:逻辑代数基本定理与代数法化简 难点:代数法化简	课堂讲授	代数法化 简习题
2	逻辑函数的卡诺 图法化简	2	重点:卡诺图画法、卡诺圈画法、化简后的"与项"写法 难点:卡诺圈的画法	课堂讲授	卡诺图法 化简习题
2	逻辑门内部结构,数字集成电路类型及特点	2	难点:逻辑门内部结构 重点:数字集成电路类型及特点	课堂讲授	数字集成 电路类型 及特点习 题
3	组合逻辑电路的 分析,竞争与冒 险,Proteus 电 路仿真软件的使 用	4	重点:组合逻辑电路的分析。 难点:电路图调试技术	课堂讲授	组合电路 分析、冒 险判断记 解决习题
4-5	SSI 组合逻辑电 路的设计	4	重点: SSI 组合逻辑电路的设计 难点: 真值表的列出	课堂讲授	SSI 组合 电路设计 题
6	MSI 组合逻辑电 路器件及应用一	2	重点:数据选择器、编码器的功能 难点:数据选择器的应用分析与设计	课堂讲授	MSI 组合 逻辑电路 分析题
6	MSI 组合逻辑电 路器件及应用二	2	重点:译码器、加法器的功能 难点:译码器的应用分析与设计	课堂讲授	MSI 组合 逻辑电路 设计题
7	电路设计制作步骤、仿真软件和 硬件工具使用方法	2	重点: 电路设计制作步骤 难点: 软硬件工具使用方法	讲授与 实验	
8	时序电路的概 念、模型与触发 器介绍	2	重点: JK 触发器、D 触发器应用 难点: JK 触发器、D 触发器结构	课堂讲授	JK、D 触 发器时序 波形
9	MSI 时序逻辑电 路器件	2	重点:移位寄存器、计数器的功能与应用难点:移位寄存器、计数器的应用	课堂讲 授	移位寄存 器、计数 器的应用 分析
10	定时器、脉冲发生器	2	重点:定时器、脉冲发生器 难点:555多谐振荡器原理	讲授与 实验	
11	时序电路概念、 分类及时序电路 的分析	2	重点与难点: 同步时序电路的分析	课堂讲授	
11-12	时序电路设计	6	重点:状态图和状态表的建立,状态化简,状态编码,激励函数和输出函数求解,电路图绘制	课堂讲授	序列检测 器设计

			难点:状态图的建立,激励函数和:解	输出函数求		
13	存储器	4	重点:存储器结构、分类与性能指标 难点:存储器结构		课堂讲授	存储器分类
14-15	可编程器件	6	重点难点:可编程器件的了解,开发环境的熟悉,图形输入和文本输入的初步掌握。		讲授与 实验	可编程器 件分类
16	A/D与D/A	4	重点: 掌握 A/D 转换器的功能和使用方法 难点: A/D 转换的原理和类型		课堂讲授	A/D 类型 及转换频 率
17	数字系统设计	2	重点难点:数字系统设计的方法,掌握一个简单数字系统的设计。		课堂讲授	
17	期末综合实验任 务及设计思路	2	重点难点:期末综合实验设计思路		讲授与 小组讨 论	
	合计:	54				
实践教学进程表						
周次	实验项目名称	学时	重点与难点	项目类型 (验证/综 合/设计)	教学 方式	
4	实验一 Proteus 仿真软件的使用 一一验证三变量 多数判决器的功 能	2	重点与难点: Proteus 仿真软件 的使用	验证	仿真实验	
5	实验二一SSI 组合逻辑电路 的设计一四变 量多数判决器 的设计	2	重点与难点:四变量多数判决器的电路设计	设计	仿真实验	
7	实验三 编码器、 译码器和数码管 的应用——8 路 按键的数码显示	2	重点与难点:编码器、译码器和数码管的功能和使用方法	设计	仿真实验和实物实 验	
8	实验四 组合逻辑电路综合设计——血型匹配指示器的设计	2	重点与难点:血型编码与血型匹配检测电路设计	综合	仿真实验	
9	实验五 寄存器 的应用——六位 密码锁的设计	2	重点:寄存器 74LS373 的应用, 难点:六位密码锁的设计。	设计	仿真实验	
10	实验六 计数器 的 应 用 —— 74160 和 74161 的应用	2	重点与难点:任意进制计数器的构成方法;同步 Load 信号和异步清零 MR 信号的功能	设计	仿真实验	

15	实验七 存储器 及 A/D 转换器的 应用	2	重点与难点:静态 RAM 的功能和使用方法,A/D 转换器的功能和使用方法	设计	仿真实验
18	实验八 时序逻辑电路综合设计——四路抢答器的设计	4	重点与难点:四路抢答器的电路原理	综合	仿真实验和实物实 验
	合计:	18			

成绩评定方法及标准					
考核形式	评价标准	权重			
考勤	此项 3 分。每次旷课扣 1 分,迟到扣 0.5 分,事假、病假不扣分,扣完为止。	3%			
作业	此项 5 分。独立、按时、按量完成作业,不扣分。缺 1 次作业 扣 1 分,抄袭 1 次扣 1 分,晚交 1 次扣 0.5 分,扣完为止。	5%			
实验	平时实验占 15%; 期中综合实验占 5%, 期末综合实验占 42%。	62%			
理论测试(笔试)	此项占总评成绩 20%。卷面满分 100 分,其中,概念题 40 分,函数化简 20 分,组合电路设计 20 分,时序电路设计 20 分。	20%			
仿真测试 (机试)	此项占总评成绩 10%。考核一道组合逻辑电路设计题,根据仿 真功能完成情况,成绩分优、良、中、及格、不及格等五档。	10%			

大纲编写时间: 2017年9月

系(部)审查意见:

系(部)主任签名:

日期: 年 月 日

- 注: 1、课程教学目标: 请精炼概括 3-5 条目标,并注明每条目标所要求的学习目标层次(理解、运用、分析、综合和评价)。本课程教学目标须与授课对象的专业培养目标有一定的对应关系
 - 2、学生核心能力即毕业要求或培养要求,请任课教师从授课对象人才培养方案中对应部分复制(http://jwc.dgut.edu.cn/)
 - 3、教学方式可选:课堂讲授/小组讨论/实验/实训
 - 4、若课程无理论教学环节或无实践教学环节,可将相应的教学进度表删掉。